Described here are the methods for calculating the standardised incidence ratios for the incident UK RRT cohort, the standardised prevalence ratios for the total UK RRT cohort and the ratios for prevalent transplant patients.

Patients

For the incidence rate analyses, all new cases recorded by the UK Renal Registry (UKRR) as starting RRT in each year were included. For the prevalence rates analyses, prevalent patients at the end of the year were included.

Years used

Analyses have been completed for each of the last six years. Combined analyses have also been done using the data from as many of the years as are available for each area. This combined analysis is useful for the incidence rates and rate ratios analyses as there can be small numbers of incident patients particularly in the smaller areas.

Geography

The areas used were 146 English primary care trusts (PCTs), five English care trusts, the seven Welsh Local Health Boards, the 14 Scottish Health Boards and the five Health and Social Care Trusts in Northern Ireland – these different types of area are collectively called PCT/HBs here. In England these areas have undergone significant reorganisation with the introduction of clinical commissioning groups in April 2013. This report uses data up to 2012 and continues to report results at PCT level. The analyses used patient postcode rather than the GP postcode. Each postcode was linked to the ONS postcode directory (ONSPD) to give the PCT/HB code. The ONSPD contains National Statistics data © Crown copyright and database right 2013 and also Ordnance Survey data © Crown copyright and database right 2013.

Areas included in the UK Renal Registry ‘covered’ population

This year all renal centres again sent data to the UKRR so coverage of the UK is complete for 2008 to 2012. In previous years, not all renal centres were sending data to the UKRR. This meant that estimates could not be obtained for all PCT/HBs but only for those which were covered by the UKRR in the relevant year. The UKRR identified all areas which were estimated to have complete coverage and analyses were restricted to those areas. Whether an area was covered or not was dependent on whether the renal centre in the area was sending data to the UKRR and whether there were any overlapping areas with renal centres not yet connected to the UKRR. Out of the six years used for analysis, only 2007 did not have complete coverage and, even for that year, only one PCT was not covered.
Population data

Mid-2011 population estimates by PCT/HB, gender and age group were obtained from the Office for National Statistics (ONS) website (www.statistics.gov.uk), the Northern Ireland Statistics and Research Agency (NISRA) website (www.nisra.gov.uk) and the National Records of Scotland website (www.nrscotland.gov.uk). These population estimates are from the 2011 Census data. The PCT/HBs range in population size from 21,400 (Orkney) to 1.32 million (Hampshire).

The analysis for each year uses this 2011 population data. As the analyses only cover six years this was a reasonable approximation.

Calculation of rates and rate ratios

Crude rates

The crude rates, per million population (pmp), were calculated for each PCT/HB for each year:

\[\frac{1,000,000 \times \text{observed number}}{\text{population size}} \]

For the combined years analyses the observed cases are summed over the available years and the population is multiplied by the number of years that the area has been covered. Again, this is a rate per million population per year. It is an average over the available years.

Confidence intervals have not been calculated for these (single or combined years) rates but, if required, an assessment can be made of whether the rate for a given area is consistent with the rate in the whole covered population. This can be done by using the figures provided here showing the confidence intervals around the overall average rates for a range of PCT/HB population sizes. These are figures D.1 and D.2 for incidence rates, and D.3 and D.4 for prevalence rates.

Note that when using the confidence interval figures to assess how different an area’s combined years crude rate is from the overall average, the population shown on the x-axis should be the area’s population multiplied by the number of years of data that has been used (e.g. 4 for the example above). In doing this, the confidence intervals obtained become narrower, consistent with the analysis now being based on more than one year of data.

These confidence intervals have been obtained using the Normal approximation to the Poisson distribution.

Fig. D.1. 95% confidence limits for incidence of 108 pmp for population size 80,000–800,000

For the incident analyses, confidence intervals have only been calculated around the overall average for populations of over 80,000. This is because below this level the number of cases you would expect per area is low and so the Poisson distribution is skewed and the Normal approximation is not appropriate. Due to prevalence rates being higher, confidence intervals can be obtained using this method for lower population sizes.

Fig. D.2. 95% confidence limits for incidence of 108 pmp for population size 80,000–4 million
There are large differences in incidence and prevalence rates for RRT between age and gender groups. As there are also differences in the age/gender breakdowns of the different areas it is useful to produce estimates standardised for age and gender. The method used is indirect standardisation.

Observed cases (O_i) were calculated by summing all cases in all age and gender bands for each PCT/HB.

Expected cases (E_i) for each PCT/HB were calculated as follows:

Overall crude rates (for each year) were calculated for the whole covered population (the standard population) by summing the observed numbers, over the PCT/HBs, for each age/gender band and dividing this by the total covered population in that age/gender band. These crude rates (by age/gender band) were then multiplied by the population each PCT/HB has in each band to give the number of cases expected in that band if that PCT/HB had the same rates as the standard population.

These expected numbers were then summed over the age/gender bands to give an expected total number of cases in each PCT/HB. The age/gender standardised ratio for PCT/HB i is then O_i/E_i.

The expected number of cases is the number you would see if the rates seen in the standard population applied to that individual PCT/HB’s age/gender breakdown. 95% confidence intervals were calculated for each area using an error factor (EF) as follows:

$$LCL = SR/EF$$
$$UCL = SR \times EF$$

Where $EF = \exp\left(1.96/\sqrt{(O_i)}\right)$. A standardised ratio (SR) of 1 indicates that the area’s rate was as expected if the age/gender rates found in the total covered population applied to the PCT/HB area’s population structure; a value above 1 indicates that the observed rate was greater than expected given the area’s population structure, if the lower confidence limit was above 1 this was statistically significant at the 5% level. The converse applies to standardised ratios under one.

The combined years analyses are similar to the above except that the observed and expected numbers are summed over the years.

Remaining variability between rates

Even after standardisation there remains a large amount of variability between PCT/HBs – as can be seen by the large numbers of significantly low or high standard ratios. This is partly because these ratios have only been adjusted for age and gender and have not been adjusted for ethnicity. Much higher rates are expected in populations with a high percentage of patients from South Asian and Black backgrounds. It
is hoped that next year we will do further analyses standardised for ethnicity as well.

Caution needed when comparing a PCT/HB’s standardised incidence or prevalence ratios over time
As the covered areas have changed over time, the ‘total’ population used for standardisation also changes. For example, the rate ratios for 2007 and 2008 are not strictly comparable as they are standardised to different populations. However, the differences are now small because, as mentioned above, only one area was not covered for 2007 and since then all areas have been covered.