Blood pressure control in children following kidney transplantation in the UK

Manish Sinha
Evelina Children’s Hospital
London

UKRR and NHS Kidney Care Audit meeting
9th October 2012
Background (1)

- Hypertension in renal transplant (TX) recipients is associated with transplant dysfunction, accelerated graft failure, left ventricular hypertrophy and increased future cardiovascular morbidity and mortality
 - Data in children is limited
Hypertension following kidney transplantation is multifactorial and related to

i. Donor status

ii. Pre-transplant recipient status – previous hypertension, pre-TX dialysis status and modality, genetics, primary hypertension

iii. Factors that develop following TX – IFTA, transplant renal artery stenosis, adverse effects of immunosuppressants, BMI, pyelonephritis
Paediatric RR report in 2003

- UK paediatric TX population in 2003
- Observed that the management of hypertension in children appeared to be ‘sub-optimal’
BAPN blood pressure audit: objectives

• To describe the distribution of systolic and diastolic BP and the prevalence of systolic and/or diastolic hypertension in children over first 5-years following TX
 – Nationally and at individual centres in the UK

• To evaluate risk factors associated with systolic and/or diastolic hypertension in this cohort

• To assess if there are ‘centre-specific’ factors leading to any differences between centres
Methods (1)

• Development of audit proposal, objectives, data collection and analysis procedures

• Travel to individual units and hand searching of case-notes (13 in total: 10 in England, 1 each in Scotland, Wales and Northern Ireland)

• Centre-specific audit committee approval and authorizations
Methods (2) – inclusion and exclusion criteria

• Included (i) all aged <18 years receiving a kidney-only TX and (ii) receiving follow-up in a paediatric nephrology centre at the time of collecting data

• Excluded: (i) <6m post-TX (ii) if no clinic BP measurements were available

• Blood pressure measured using different devices at centres
 – 9 oscillometric; 2 doppler detection (systolic only) and one aneroid
Methods (3)

- Pre-defined time points at pre-TX, 6-monthly until 5y
- In addition to baseline demographics, allograft source, dialysis duration and type and past hypertension
- At each point data collected and analysed as
 - Systolic and diastolic blood pressure \(\rightarrow \) z-scores
 - Height, weight and BMI \(\rightarrow \) z-scores
 - Haemoglobin and eGFR
 - Treatment with anti-hypertensive medications (yes/no)
 - Immunosuppressive drug therapy
Problem with regard to “normal” range

A fixed normal range cannot apply across all body sizes
Methods (4)

• Hypertension defined as systolic and/or diastolic BP greater than the 95th percentile i.e. >1.645 z-score as per the ‘Fourth Report’

• Non-hypertensive:
 – Pre-hypertension: 90th-95th percentile (1.28-1.645 z-score)
 – Normal with BP <90th percentile (<1.28 z-score)

• If systolic and diastolic BP levels belonged to different categories, the higher of the two level were used for categorization
Methods (5) – analysis of prevalence of hypertension

• Prevalence of systolic and/or diastolic hypertension

1. Defined as the proportion of patients with systolic and/or diastolic BP >95th percentile +/- anti-hypertensive use

2. Defined by use of anti-hypertensive medication alone

3. Centre-specific prevalence
Systemic arterial hypertension in children following renal transplantation: prevalence and risk factors

Manish D. Sinha1, Larissa Kerecuk2, Julie Gilg3, Christopher J.D. Reid1 and on behalf of the British Association for Paediatric Nephrology

1Department of Paediatric Nephrology, Evelina Children’s Hospital, Guys & St Thomas NHS Foundation Trust, London, UK, 2Department of Paediatric Nephrology, Birmingham Children’s Hospital, Birmingham, UK and 3UK Renal Registry, Southmead Hospital, Bristol, UK.

Correspondence and offprint requests to: Manish D. Sinha; E-mail: manish.sinha@gstt.nhs.uk
Results (1)

- We reviewed case notes from 12 UK centres including 524, 505, 430 and 231 TX patients at 6m, 1, 2 and 5-years post-TX
- 484 (92%) with first TX, 7.2% with second TX
- 73% transplanted since year 2000
- Caucasian: Asian: Black 83.3%: 14.7%: 2%
Table 1.
Demographics of patients with and without hypertension at 6 months following transplantation

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Hypertensive (n = 117)</th>
<th>Non-hypertensive (n = 311)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years [median (IQR)]</td>
<td>9.0 (4.5–12.0)</td>
<td>9.6 (5.4–12.9)</td>
<td>0.18</td>
</tr>
<tr>
<td>Male (%)</td>
<td>66.7</td>
<td>66.6</td>
<td>0.98</td>
</tr>
<tr>
<td>White Caucasian (%)</td>
<td>82.1</td>
<td>84.2</td>
<td>0.59</td>
</tr>
<tr>
<td>Structural disease (%)</td>
<td>55.5</td>
<td>58.1</td>
<td>0.64</td>
</tr>
<tr>
<td>Dialysis pre-transplantation (%)</td>
<td>80.3</td>
<td>68.8</td>
<td>0.02</td>
</tr>
<tr>
<td>LRD transplant (%)</td>
<td>13.7</td>
<td>36.5</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>eGFR in mL/min/1.73m²</td>
<td>64.2 ± 16.2</td>
<td>64.8 ± 17.2</td>
<td>0.77</td>
</tr>
<tr>
<td>Height z-score</td>
<td>−1.95 ± 1.33</td>
<td>−1.62 ± 1.23</td>
<td>0.02</td>
</tr>
<tr>
<td>Weight z-score [median (IQR)]</td>
<td>−0.35 (−1.37 to 0.84)</td>
<td>−0.23 (−1.10 to 0.79)</td>
<td>0.41</td>
</tr>
<tr>
<td>BMI z-score</td>
<td>1.27 ± 1.29</td>
<td>1.02 ± 1.29</td>
<td>0.08</td>
</tr>
<tr>
<td>BMI z-score group (%)</td>
<td></td>
<td></td>
<td>0.78</td>
</tr>
<tr>
<td>Obese (≥ 98th percentile)</td>
<td>25.4</td>
<td>22.6</td>
<td></td>
</tr>
<tr>
<td>Overweight (≥ 91st and < 98th percentile)</td>
<td>16.7</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>Normal (< 91st percentile)</td>
<td>57.9</td>
<td>58.8</td>
<td></td>
</tr>
<tr>
<td>Dialysis vintage (%)</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>1990–2000</td>
<td>36.7</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>2001–07</td>
<td>63.3</td>
<td>73.3</td>
<td></td>
</tr>
<tr>
<td>Anti-hypertensive medications (%)</td>
<td>69.9</td>
<td>54.4</td>
<td>0.006</td>
</tr>
<tr>
<td>Immunosuppressant medicationsb</td>
<td></td>
<td></td>
<td>0.83</td>
</tr>
<tr>
<td>Tacrolimus (%)</td>
<td>54.0</td>
<td>53.6</td>
<td></td>
</tr>
<tr>
<td>Cyclosporine A (%)</td>
<td>29.2</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>Otherc (%)</td>
<td>16.8</td>
<td>19.2</td>
<td></td>
</tr>
</tbody>
</table>

aSubjects were categorized as being hypertensive if systolic and/or diastolic BP > 95th > 6 months following transplantation and non-hypertensive otherwise. Data shown as mean ± SD unless stated otherwise. LRD, living-related donor.

bNearly all patients were on alternate-day prednisolone in addition to other agents.

c‘Other group’ comprises patients on combination therapy tacrolimus + mycophenolate mofetil (MMF) or cyclosporine A + MMF or on MMF, sirolimus or azathioprine.
Distribution of systolic and diastolic BP z-scores at four time points in the three subgroups

© The Author 2012. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Results (2): prevalence of hypertension

• Blood pressure characteristics of those with hypertension
 – Isolated systolic hypertension predominantly (approx 60-65%)
 – Systolic and diastolic hypertension (22-26%)
 – Diastolic hypertension alone (<10%)

• Similar findings at different time-points
Results (3): those with persistent hypertension

- 117 children hypertensive at 6m post-TX
 - f/u: 113 (1-year); 101 (2-years) and 56 (5-years)
- In total, 51% (1-year); 48% (2-years) and 29% (5-years) remained hypertensive
- No significant differences in graft function observed between hypertensive and non-hypertensive patients
The distribution of systolic BP z-scores by individual centre at four time points following transplantation
Funnel plots illustrating the prevalence and variability of children with systolic hypertension at individual centres following transplantation.
Results (4): risk factors associated with hypertension

- **Univariate analysis**
 - Younger age, short stature, received dialysis pre-TX, DD transplant and be currently on anti-hypertensive medication
 - No difference in BMI or eGFR
 - Patients transplanted pre-2000 more likely to be hypertensive

- **Multivariate analysis**: strongest relationship with hypertension
 - Donor source OR 4.16 (DD vs LD)
 - Height z-score OR 2.65 (lowest vs highest height quartile)
 - More likely to have had haemodialysis pre-TX and be obese post-TX
 - No difference in donor source or duration
 - Anti-hypertensive use OR 2.05 (yes vs no)
Discussion

• Our findings provide key data relating to the level of blood pressure control in this cohort in both treated and untreated patients
 - Compare with report of the NAPRTCS database
• Role of diastolic blood pressure
• Effects of events during transplantation on subsequent hypertension rates
• Short stature – surrogate marker for ? more severe ERF course
• Limitations particularly relating to different techniques and clinic BP only
Conclusion

- Just over 25% children remained hypertensive following transplantation with little improvement several years after TX despite active treatment
- There is wide variation in prevalence of hypertension between centres
 - no patient specific cohort characteristics at each centre that would account for this effect
- Management of hypertension in the UK post-TX is sub-optimal with 30% patients with hypertension on no treatment
Judgment remains important !!!!
Acknowledgements

• Chris Reid and Larissa Kerecuk
• Julie Gilg, Biostatistician
• Renal Registry
• BAPN and colleagues at all other units
• Roche pharmaceuticals
THANK YOU
<table>
<thead>
<tr>
<th></th>
<th>Univariate</th>
<th></th>
<th>P</th>
<th></th>
<th>Multivariate</th>
<th></th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (< 12 years versus ≥12 years)</td>
<td>2.11 (1.11-3.99)</td>
<td>0.02</td>
<td></td>
<td></td>
<td>2.03 (1.00-4.12)</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Gender (female versus male)</td>
<td>0.81 (0.48-1.39)</td>
<td>0.45</td>
<td></td>
<td></td>
<td>0.61 (0.33-1.13)</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Ethnic group (Caucasian versus non-Caucasian)</td>
<td>0.79 (0.42-1.51)</td>
<td>0.47</td>
<td></td>
<td></td>
<td>1.01 (0.50-2.04)</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>BMI z-score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obese versus normal</td>
<td>1.47 (0.81-2.65)</td>
<td>0.20</td>
<td></td>
<td></td>
<td>1.50 (0.79-2.83)</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Overweight versus normal</td>
<td>0.70 (0.34-1.44)</td>
<td>0.34</td>
<td></td>
<td></td>
<td>0.72 (0.38-1.58)</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Height z-score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest quartile versus highest quartile</td>
<td>2.26 (1.15-4.46)</td>
<td>0.02</td>
<td></td>
<td></td>
<td>2.65 (1.25-5.61)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Second quartile versus highest quartile</td>
<td>1.10 (0.53-2.29)</td>
<td>0.80</td>
<td></td>
<td></td>
<td>1.09 (0.50-2.38)</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Third quartile versus highest quartile</td>
<td>0.88 (0.41-1.90)</td>
<td>0.74</td>
<td></td>
<td></td>
<td>0.85 (0.36-1.93)</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Donor source (deceased versus living donor)</td>
<td>5.03 (2.30-11.02)</td>
<td>< 0.0001</td>
<td></td>
<td></td>
<td>4.16 (1.82-9.51)</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td>Dialysis pre-transplantation (any versus none)</td>
<td>1.79 (0.97-3.29)</td>
<td>0.06</td>
<td></td>
<td></td>
<td>1.78 (0.88-3.60)</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Anti-hypertensive use (yes versus no)</td>
<td>1.97 (1.15-3.35)</td>
<td>0.01</td>
<td></td>
<td></td>
<td>2.07 (1.13-3.76)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Primary disease (structural versus non-structural)</td>
<td>1.04 (0.63-1.72)</td>
<td>0.86</td>
<td></td>
<td></td>
<td>1.36 (0.76-2.42)</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Transplant vintage year (2001 or after versus 2000 and before)</td>
<td>0.65 (0.37-1.14)</td>
<td>0.13</td>
<td></td>
<td></td>
<td>1.31 (0.69-2.49)</td>
<td>0.41</td>
<td></td>
</tr>
</tbody>
</table>
Systemic arterial hypertension in children following renal transplantation: prevalence and risk factors

Table 2.
Level of systolic and diastolic BP in ‘millimetres of mercury’ and z-scores for all patients by three subgroups: hypertension (> 95th >), pre-hypertension BP (90th–95th >) and normal BP (< 90th >) at 6 months, 1 year, 2 years and 5 years post-transplantation

<table>
<thead>
<tr>
<th>BP level</th>
<th>6 Months (n = 428)</th>
<th>1 Year (n = 428)</th>
<th>2 Years (n = 365)</th>
<th>5 Years (n = 195)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension, n (%)</td>
<td>117 (27.3%)</td>
<td>118 (27.6%)</td>
<td>95 (26.0%)</td>
<td>50 (25.6%)</td>
</tr>
<tr>
<td>BP in mmHg</td>
<td>121 ± 11</td>
<td>121 ± 11</td>
<td>124 ± 9</td>
<td>128 ± 11</td>
</tr>
<tr>
<td>SBP z-score</td>
<td>2.35 ± 0.78</td>
<td>2.22 ± 0.85</td>
<td>2.33 ± 0.75</td>
<td>2.32 ± 0.88</td>
</tr>
<tr>
<td>DBP in mmHg</td>
<td>73 ± 10 (n = 97)</td>
<td>73 ± 10 (n = 101)</td>
<td>72 ± 11 (n = 83)</td>
<td>74 ± 12 (n = 40)</td>
</tr>
<tr>
<td>DBP z-score</td>
<td>1.39 ± 0.82</td>
<td>1.48 ± 0.87</td>
<td>1.24 ± 0.96</td>
<td>1.16 ± 0.99</td>
</tr>
<tr>
<td>Pre-hypertension, n (%)</td>
<td>61 (14.3%)</td>
<td>52 (12.1%)</td>
<td>42 (11.5%)</td>
<td>29 (14.9%)</td>
</tr>
<tr>
<td>BP in mmHg</td>
<td>112 ± 9</td>
<td>111 ± 10</td>
<td>113 ± 9</td>
<td>115 ± 8</td>
</tr>
<tr>
<td>SBP z-score</td>
<td>1.24 ± 0.44</td>
<td>1.19 ± 0.52</td>
<td>1.25 ± 0.42</td>
<td>1.27 ± 0.52</td>
</tr>
<tr>
<td>DBP in mmHg</td>
<td>67 ± 10 (n = 44)</td>
<td>69 ± 8 (n = 39)</td>
<td>67 ± 8 (n = 39)</td>
<td>69 ± 8 (n = 22)</td>
</tr>
<tr>
<td>DBP z-score</td>
<td>0.79 ± 0.72</td>
<td>0.96 ± 0.64</td>
<td>0.85 ± 0.69</td>
<td>0.87 ± 0.68</td>
</tr>
<tr>
<td>Normal BP, n (%)</td>
<td>250 (58.4%)</td>
<td>258 (60.3%)</td>
<td>228 (62.5%)</td>
<td>116 (59.5%)</td>
</tr>
<tr>
<td>BP in mmHg</td>
<td>99 ± 12</td>
<td>101 ± 11</td>
<td>101 ± 12</td>
<td>103 ± 10</td>
</tr>
<tr>
<td>SBP z-score</td>
<td>0.16 ± 0.84</td>
<td>0.15 ± 0.78</td>
<td>0.10 ± 0.79</td>
<td>0.12 ± 0.77</td>
</tr>
<tr>
<td>DBP in mmHg</td>
<td>58 ± 10 (n = 152)</td>
<td>58 ± 9 (n = 152)</td>
<td>59 ± 8 (n = 141)</td>
<td>62 ± 8 (n = 81)</td>
</tr>
<tr>
<td>DBP z-score</td>
<td>0.09 ± 0.71</td>
<td>0.02 ± 0.73</td>
<td>0.08 ± 0.66</td>
<td>0.16 ± 0.66</td>
</tr>
</tbody>
</table>

The classification into subgroups uses whichever is higher of SBP and DBP z-score. Data shown as mean ± SD. SBP, systolic BP; DBP, diastolic BP.
Z-scores

Normally distributed population
Example

- Child with systolic BP at 130 mm, the mean for age and height is 110 mm and the standard deviation is 10.

\[
Z = \frac{130 \text{ (measured value)} - 110 \text{ (mean value)}}{10} \text{ standard deviation (10)}
\]

\[
Z = \frac{130 - 110}{10} = +2
\]

This allows sequential comparison in a single individual and between individuals.
Tall v short : fat v thin
Indexation for body size

- Why not just index the value for body size?

- The indexed value may change across body size

Foster 2008

The indexed value may change across body size
What indicator of body size should we use to plot z-scores against?

Z-score

Body size ? Weight ? Height ? BSA
Indicator of body size

- Care necessary about what function of body size is used in the calculation of z-scores
- Should not assume BSA will be best
- Height or other variable may be better
- Depends on parameter being measured
- Be careful about z-scores of sizes plotted
Background (1)

- Modern management of chronic kidney disease (CKD) and advances in dialysis therapy during childhood have resulted in an improvement of their life expectancy.
- Increasing numbers survive to adulthood but as young adults have an increased risk of cardiovascular disease.
- Restoration of renal function by transplantation reduces though does not eliminate this increased risk.
Background (1)

• Cardiovascular disease is one of the commonest cause of morbidity and mortality in young adults with childhood-onset ERF

• Young adults with dialysis dependent renal failure have an almost 700 fold increase in risk of cardiac mortality

• Children and adults with *childhood onset* ERF have a 30 times increase in mortality
 - 40-45% of these are cardiovascular deaths